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Industrial wastewaters contain a multitude of environmentally toxic and harmful pollutants, which when discharged unchecked
can cause irreparable damage to the biota. Adsorption has been an exciting method of treatment for the removal of toxic
components from industrial effluent. An understanding of isotherm modelling will further the appreciation of the adsorption
process behaviour. Sorption rate, thermodynamics, stability, spontaneity and capacity, are all parameters that can be esti-
mated by mathematical modelling using isotherms. Several models exist to simulate and predict adsorption behaviour, each
attempting to simplistically represent the underlying process, building on certain assumptions. This paper reviews existing ad-
sorption isotherms and the advancements made by authors in this field, whether it be non-linearization, multi-component ac-
commodation or parameter replacement. A researcher may apply the model that best suits his or her experimental require-
ments.
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Introduction
The current market from the local to the global scale is

filled with consumerist products. Invisible to the eye is the
manufacture mechanism which consumes its unique set of
raw materials and spouts out toxic by-products. The multi-
tude of by-products from innumerous industries are to be
treated by intricately designed processes so as to reduce
them to a more acceptable and eco-friendly form. One of the
processes that achieves this is adsorption and the process
design is governed by an isotherm model. Even with the
advent of modern programming power, the need for aesthetic
models has not diminished. Researchers even today attempt
to incorporate as many adsorption process parameters as
possible into their models in the most efficient and humble
ways possible. The objective of this paper is to review all the
prominent classical and modern approaches to isotherm
modelling and were amalgamated in the previous that the
current century.

Linearized verses non-linear mathematical models
The broad standard in modelling is to use linear regres-

sion first to determine whether it can fit the particular type of
curve for data available. Linear regression models can fit
limited curve shapes, but mathematical simplicity yields pa-

rameters more easily. If linear regression fails, then the ne-
cessity of nonlinear regression arises. Linear regression
trumps over non-linear modelling largely due to its simplicity
of understanding, ease of application and presentation of
wider statistics for model and data assessment. Non-lineari-
zation is much more versatile. It can model a wide variety of
curve profiles, but requires more effort in independent pa-
rameter determination and best-fit analysis. Due to such high
flexibility in model formation, hypothesis testing has to be
performed on each parameter individually. The regression
coefficient and p-values are also not possible to be found.

A nonlinear programming was executed up to a particu-
lar number of iterations within limits of the experiment1. Upon
convergence, this led to simplification of the procedure and
acceptable parametric values. Statistical predictors are great
tools associated with a regression study. They help in devel-
oping an optimal process equation for the sorption isotherm.
A study was conducted among five commonly used statisti-
cal indicators2. The best fit isotherm determination in case of
linear regressions was presented best by Student’s T-test
and the 2. In case of non-linearity, four out of the five func-
tions (except Student’s T-test) gave agreeable estimations.
Error analysis was used as another indicator for comparing
performance of best fit by linear and non-linear regression.
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R2 coefficient was best suited for linearization and error func-
tions like HYBRID and sum of squared errors, SSE repre-
sented non-linear systems well.

In another study, performance of multiple regression mod-
els4 was appraised by means of median percentage error
(MPE) and mean absolute relative error (MARE). In case of
repetitions greater than three, orthogonal distance regres-
sion method gave results synonymous with the weighted least
squares model, a much simpler procedure. A study involving
the utilisation of activated carbon for removal of basic dyes
demonstrated that the non-linear method was better at ac-
quiring the isotherm parameters5.

Linearizing a non-linear isotherm equation leads to cre-
ation of inherent errors. The linear approach considers con-
stant error distribution at each value of equilibrium pollutant
concentration in solution. This alters the shape of error dis-
tribution. Regression on non-linear data would evade such
inaccuracies and provide more accurate parametric values.
Realizing this, linear model parameter estimation was for-
saken in a study and only non-linear isotherm and kinetics
modelling was done6. Toth isotherm seemed to predict re-
sults of chemisorption very well alongside Langmuir model.

Langmuir isotherm, when linearized in different forms
yields varied Langmuir constants. Graphs of Ce/qe against
Ce, 1/qe against 1/Ce, qe against qe/Ce, and qe/Ce against qe
were plotted3. It was understood that each linearized form
presents different variation in errors, specific to the corre-
sponding mode of linearization. In other words, the reorien-
tation of a non-linear isotherm model into a linear isotherm
model seems to indirectly modify the error functions, thus
influencing error variance. A general trial-and-error technique,
applicable to computer based linear regression was devel-
oped to determine the coefficient R2 for a series of values of
a constant A.

Modelling of adsorption
Modelling using various methods have been performed

by experimenters across the globe. Henry’s law along with
Langmuir and Freundlich models are considered as pillars
of classical isotherm modelling. Many further models have
been developed on tracks of thoughts based on mechanistic
and empirical approaches. Compilation of sequentially ar-
ranged modular mathematical steps constitute a mechanis-
tic model. These models characteristically have a percep-
tible and physical facet49. Extensive parameter observation

and data recording are what characterise an empirical model.
A demerit to this approach is that an empirical model allows
you to predict the product yield sans the understanding of
process and parameter interactions. A suggestion to tackle
this situation and attain superlative yields is to develop mecha-
nistic models based on empirical modifications, after exten-
sive data collection and analysis.

Researchers have long since tried to model adsorption
capacities of different sorbents50. Condensed information of
different models has been listed in Table 1.

Species attempted to be removed from wastewaters in-
clude single and multiple component heavy metals, single
and polycyclic aromatics, long chain organics, volatile com-
pounds as also multi component acid dyes and other toxic
pollutants that escape biological effluent treatment.

The Langmuir standard was applied to multiple compo-
nent mixtures. It calculates the sorptive capacity, qi (mg/g) of
i-th component in a mixture of N components at equilibrium
using the equilibrium concentration Cei (mg/L). Maximum
sorption capacity, qmi (mg/g) and Langmuir coefficient, ki are
determined by fitting the single component adsorption equi-
librium data. To account for errors generated from such an
approximation, a correction ni was applied. It depends on
the characteristics of the i-th component as also the multi-
component system characteristics12. We have,
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The Freundlich standard was applied to binary systems. As-
suming kfi and ni to be Freundlich sorption constants (i = 1,
2) for each component and xi, yi, zi to be model parameters,
we have,
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Adsorption of pesticide species onto forest soil was performed
and found to display complex isotherm curves. These iso-
therm curves are either single step or multiple step7. High
performance liquid chromatograph was used to determine
the individual pesticide loadings in solution. A non-linear sta-
tistical model was used in data analysis. A higher step in a
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Table 1. Information on isotherm models
Model Variables Assumptions Might fail at Examples

  1. Henry 1 1. Low pollution loads 1. Intermediate to high pollutant loads 10
2. Minimised interparticle interactions

  2. Dubinin- 2 1. Heterogeneous surface 1. Empirical
Radushkevich 2. Intermediate and high loading 2. Low pollutant loads 20, 21

3. Temperature dependent
4. Gaussian energy distribution

  3. Elovich 2 1. Kinetics based model 1. Kinetic data might not show regularity 19
2. Multi-layer adsorption

  4. Flory-Huggins 2 1. Extent of surface coverage 1. Mostly valid for polymeric compounds 16
2. Expresses feasibility of adsorption

  5. Freundlich 2 1. Multiple layer 1. Explaining chemisorption 13, 14
2. Heterogeneous 2. Single layer
3. Physisorption 3. Varying pollutant load

  6. Halsey 2 1. Multi-layer adsorption 1. High pollutant loads more preferred 17, 22
2. Large distance between adsorbent 2. Fails Henry’s law at low sorbent

and pollutant coverage
3. Heterogeneous, Type II

  7. Jovanovich 2 1. Langmuir isotherm assumptions 1. Explaining physisorption 17, 18
2. Adsorbate-adsorbent mechanical 2. Lateral interparticle interaction

interactions 3. Hits saturation at high concentrations
3. Predicts retention capacity

  8. Langmuir 2 1. Single layer 1. Large number of layers 11, 12
2. Homogeneous 2. Heterogeneous systems
3. Chemisorption 3. Interparticle interactions

  9. Temkin 2 1. Interparticle interactions 1. Higher and lower ion dilutions 14, 15
2. Chemisorption 2. Ignores arrangement of adsorbate layer
3. Linear change in heat of adsorption

10. Aranovich 3 1. Based on BET 1. Assumes adsorbent is flat and uniform 29
2. Broad concentration range 2. Non-extensive free energy calculation

11. Brunauer- 3 1. Mono and multiple layer 1. Extremities of the loading spectrum 22, 29
Emmett-Teller 2. Surface adsorption area 2. Interaction amid adsorbed species
(BET) 3. Homogeneous 3. Adsorbent-adsorbate interactions

4. Higher adsorbed layers have 4. Heterogeneity of surface
identical adsorption energy,
equalling the fusion heat

12. Fowler- 3 1. Inter-adsorbate interaction 1. Very high surface coverage is 28
Guggenheim 2. Linear change in adsorption not explained

enthalpy with concentration
3. Exo- and endothermicity explained

13. Frenkel- 3 1. Multiple layer assumed 1. Lower concentrations 16
Halsey-Hill 2. Holds true to potential theory

3. Adsorbent-pollutant separation distance
3. Inter-layer spacing and interaction
4. Inter-adsorbate interaction
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14. Harkins-Jura 3 1. Multiple layer, Type II adsorption 1. Higher type isotherms 31
2. Heterogeneous
3. Determine surface area

15. Hill 3 1. Homogeneous 1. Heterogeneity 21
2. Cooperative adsorption due 2. Semi-empirical

to inter-species interaction
16. Hill-de Boer 3 1. Inter-adsorbent and inter-adsorbate 1. Concentration variation affects 25

interactions adsorption capacity
2. Agility of the pollutant

17. Jossens 3 1. Adsorbate-adsorbent interactions 1. Chemisorptionis not specifically 28
2. Heterogeneous explained
3. Temperature dependent

18. Khan 3 1. Bi-adsorbate systems 1. Higher mixture components 27
2. Uptake from pure solutions

of high or low dilutions
19. Koble-Corrigan 3 1. Heterogeneous 1. Partial empirical 21

2. High and low concentration 2. Trial and error optimization
20. McMillan-Teller 3 1. Surface tension effects 1. Empirical 30

2. Heterogeneity of substrate surface 2. Lower concentration
21. Radk-Prausnitz 3 1. Wide pollutant loading range 1. Suffers considerably during error 20, 26

2. Homogeneous and heterogeneous analysis
22. Redlich- 3 1. Hybrid adsorption mechanism 1. Interparticle interactions 16, 21

Peterson 2. Homogenous and heterogeneous
systems

3. Broad pollutant loadings
23. Sips 3 1. Heterogeneous 1. Doesn’t follow Henry’s law at high 16, 26

2. Dilution, temperature and pH dilutions
dependence 2. Inter-adsorbate interaction

24. Toth 3 1. High to low dilutions 1. Empirical 23, 24
2. Heterogeneous
3. Single and multiple layer

25. Unilan 3 1. Uniform energy distribution 1. Empirical 18
2. Heterogenous
3. Defines reversibility of adsorption

26. Baudu 4 1. Variation in Langmuir coefficients 1. High linearization inherent bias 28
with loading

27. Dubinin- 4 1. Heterogeneous 1. Semi-empirical 20, 32
Astakhov 2. Multiple layer 2. Higher and lower ion dilutions

3. Physisorption
4. Temperature dependence

28. Dubinin- 4 1. First layer adsorption occurs 1. Assumes that saturation concentration 32
Serpinsky at primary sites. Hydration occurs is achieved at equilibrium

leading to hydrogen bonding with
and within the latter layers

2. Activity of sites reduce as
micropore filling increases

Table-1 (contd.)
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multiple step isotherm was computed by summation of each
previous step. Assuming, s represents the total number of
steps, and b is the limit of the sorption mechanism concen-
tration (mg/L),

s
mi i e i e i

i
i e i e ii

q k C b C b
q

k C b C b1

[( ) | |]
2 [( ) | |]

   
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A unified Freundlich-Langmuir model was proposed to find
qe of an individual component in a mixture of N constituents
by utilising the complete range of multiple-solute sorption
data8. It is shown in eq. (4). Here j represents an additional
pollutant in the mixture and N is the total number of pollut-
ants.

  inN
i mi i ei j ejjq q k C k C0  (4)

Adsorption onto soils may be characterized by a distributed
reactivity model (DRM). It helped portray inherent heteroge-
neities which in turn simplified understanding of irregulari-
ties in non-linear modelling and error reduction9. In eq. (5),
while ml as the summed mass fraction and kD as the mean

partition coefficient for linear sorptions onto sorbents, mnl
represents the non-linear portion of the adsorbed mass. Typi-
cally, the pollutants vary in number from i = 1 to N, with N = 2
for binary systems.

in
i l D e nl i f eq m k C m k C

N

i 1
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
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A multiple layer, heterogeneous adsorption system was rep-
resented graphically36. A visual representation yielded that
multiple layers adsorb onto sites with high capacities before
mono layer sorption begins on weakly sorptive sites.

Physisorption onto solids was described by utilising the
merits of the density functional method37. The method holds
true for both solids with high and low porosities. A compari-
son of model outputs with experimental values reveals high
concordance. If  is the density variation from surface in
outward direction z and 0 is the density variation in absence
of wall interactions, then their difference gives us free sur-
face qe as in eq. (6),

qe = (– o)dz (6)

29. Guggenheim 4 1. Combines Langmuir and BET 1. An advanced model having same 17, 22
Anderson de- 2. Multiple layer, physisorption assumptions as base models.
Boer (GAB) 3. Inter-layer interaction and potential

difference between layers
30. n-layer BET 4 1. Space for adsorption is finite 1. As ‘n’ approaches infinity, it retorts 34

2. Only ‘n’ number of layers are back to BET
adsorbable

3. Pollutant-substrate interaction
4. Energy of first layer adsorption is

greater than fusion heat
31. Weber-Van Vliet 4 1. Fits large number of experimental 1. Empirical 33

data systems with minimal least
squared errors

2. Fitting of data by multiple non-linearity
32. Anderson 4, 5 1. Adsorption area is lower in 1. May fail for highly efficient sorbents 35

progressing layers
2. Finite adsorption layers
3. All concentrations of pollutant

33. Fritz-Schlunder 3, 4, 5 1. Fits variety of equilibrium data 1. Complex 15, 28
2. All concentrations of pollutant 2. Empirical
3. Very stable model and handles

model variations well

Table-1 (contd.)
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A unified approach to represent different types of isotherm
curves from type I to VI is given by eq. (7). Patch wise ad-
sorption onto sites with variable energies was studied38. The
sites with maximum frequency of adsorption energy are av-
eraged as ai, probability factor ai and the standard deviation
mi. Adsorption equilibrium constant k is the inverse of ps, the
pressure at saturated sorption.
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Majority of adsorption studies are equilibrium based. Mono
component, non-equilibrium data was modelled by combin-
ing classical equations with intra-particle diffusion models39.
In case of irregular and extended breakthroughs, this model
reduced errors and improved predictions considerably. Evalu-
ation of chromatographic column analysis was done by a
parabolic dilution curve for intra-particle diffusion. The con-
cepts equated to each other were,

(C – C*s)Bi
qn = q– + —————— (8)

5

qmkC*s
qn = ————— (9)

1 + kC*s
We have, qn as non-equilibrium sorption capacity, q– is the
average sorption capacity, dependant on time and bed height.
Bi is the Biot number, Cs is the pollutant concentration and
C*s is the pollutant concentration under dynamic settings.

Certain aromatics like aniline were extracted from solu-
tion by using activated carbon. A blend of Joranovic method,
building on Langmuir method was used in order to generate
a model with very low error40. Studies were conducted on
activated carbon and found that sorption increased with lower
sorbent particle size, lower solubility of pollutant in water and
higher molecular weight of the pollutant. If r, p and z are
isotherm constants, then the eq. (10) is,

[1 – e–p Cz
e] r Ce

qe = ———————— (10)
1 + Ce

Analysis of heavy metal sorption onto substrates was aided

by development of ion-exchange isotherms, as given by eq.
(11). This sorption phenomenon is different from both physi-
sorption and chemisorption41. The terms i and j denote the
metal ion species in the bi-component mixture, whereas x
and y are the equivalent fraction of a component in liquid
and solid phase respectively.

i
j

ij i

Y x
k x

1

1


 (11)

A sorption system not favouring a forward reaction was stud-
ied based on the local equilibrium theory which ignores the
concentration gradient between solid and solution phase42.
We have, e as the porosity inherent to the sorbent material,
v as the velocity of liquid in interstices, dqe/dC is the gradient
of capacity with concentration and Z is the bed length. Sorp-
tion time available t is given by eq. (12),

edqZ et
v e dC

11        
   

(12)

Effect of different parameters on isotherm modelling
Various processes affect how a sorbent-sorbate system

behaves. Process analysis, simulation and optimization in-
volve inclusion of the major processes and parameters that
affect sorption. Due to model simplification, some factors are
omitted from equations. Analysis of these variables is also of
concern and have been studied as given below.

Effect of pH:
Dependence of sorption efficiency on pH was studied and

found to vary in direct relation with affinity coefficient43. The
analytical relation and the mono-component model proposed
is given by eq. (13). Cationic competitiveness exists among
charged species for sorption onto sites of the sorbent44. This
has been seen to affect the pH of the solution and thus the
sorption capacities as realized by a study conducted on cad-
mium and copper.

log K = –0.95 pH + 7.35 (13)

qm (Ce k pH)n
qn = ——————— (14)

1 + (Ce k pH)n

Effect of moisture content:
Smaller moisture content on adsorbent was in direct cor-

relation with elevated curves during modelling. An exponen-
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tial and empirical relation exists between moisture content
and adsorption capacity46. With M as moisture (%) and c, d
as empirical constants reliant on Ce, we may interpret the
relation as,

qe = cMd (15)
Temperature:
Temperature is a very important factor which governs both

adsorption capacity and structural integrity of the adsorbent.
A gas adsorption model was developed as given by eq. (16).
This relation can be extended to an aqueous solution of pol-
lutants, so as to relate temperature with adsorption extent46.
Considering T to be temperature in ºC, V as adsorbed pollut-
ant content and x, y as functions of temperature and con-
centration,

T— = xT + y (16)
V

Site energy distribution:
Distribution of energy over sorbent surface is assumed

to be either homogeneous or heterogeneous. An extension
of Toth model was derived, incorporating effects of energy
distribution directly into the model47. An exponential quasi-
Gaussian variation of site enthalpies was observed at tem-
peratures as low as 77 K. The leftward broadening of the
graph indicates that the statistical mean energy is higher than
majority of the values. If Emax is the maximum site energy
and Emin is the minimum, then,

e

CE RT
C

* max
max ln

 
   

 
(17)

A similar equation for Emin is applicable. With Cmax (maxi-
mum concentration of pollutant allowable) and Ce (equilib-
rium concentration of pollutant in solution)48.

Conclusions
Industrial pollution abatement is of prime significance.

With that goal in mind, to suit each industrial need, several
mathematical isotherm models for adsorption have been
developed. Researchers have made alterations to previous
models by changing experimental parameters affecting the
process. Each isotherm model begins with certain assump-
tions and builds upon them to produce the desired outcome.
Non-linearization in regression studies have proven to re-
duce errors and provide better concordance with experimental

data. Existing isotherm models, their assumptions and short-
comings have been discussed. Different adsorption model-
ling approaches have been mentioned. This should help the
reader apply an appropriate model to study their system. In-
clusion of intrinsic factors into modelling equations has also
been discussed for better evaluation of their effects.
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